第五章 第七节
2.粒子光束炮(Particle Beam)
粒子光束炮简称为粒子炮,它也算是导能武器的一种。通常人们把雷射炮与粒子炮这些导能武器通称为光束武器(BeamWeapon,BW),这是因为粒子炮打出来的粒子团速度依种类的不同可能会到光速的90%以上,加上在地球上实验室里加速器的高能粒子束与大气分子撞击发光现象会形成一道漂亮的光束的缘故(宇宙中就不会如此了)。
粒子炮有很多种,基本上可分成带电与不带电两类,各有其特性与优缺点。荷电粒子炮所发射的粒子团带有电荷,视种类的不同正电荷或是负电荷都有可能。其优点是构造会比较简单,同时电荷特性会对目标的电路造成短路这些的附带伤害。当然这只是附带的,主要的破坏还是打洞。其缺点则是有效射程较短,因为荷电粒子团本身的粒子会互斥,因此会很快的扩散开而降低威力。再来就是它易受磁场偏转,故在地球或是其他具有高磁场星球周边使用的弹道偏转会让射击解算处理十分困难。
中性粒子炮则没有上述的缺点。由于弹药是用中性粒子,因此没有弹道受磁场影响而偏转的问题,也没有荷电粒子炮的互斥问题,使威力随距离下降的扩散效应也几乎不会发生。中性粒子炮通常会比较复杂些,有中子光束炮,发射中性粒子的粒子炮(例如发射氢离子在其出炮口时导入电子使之回复电中性),或者是电浆炮(电浆是电中性的)。粒子炮的优点是威力通常比雷射大些,因为具有质量的关系。要携带弹药,但质量较少。所以虽然比雷射炮多耗些储存空间,还是比飞弹或是大型炮弹这些省。
粒子炮还有个特性,就是可以随时调整质量与弹道速度。例如以同样的炮管而言,若把发射的粒子团质量增加,就可以增大破坏力。不过弹道速度会因此而下降,也就是说精确度也会跟着下降。但这可以依目标距离来进行自由调整。如远一点或是小而高机动的目标使用较高速较轻的弹头攻击之,较近与较大较迟缓的目标则可以用较低速的大弹头来打。如此精度的降低便不至于有太大的影响,反而能更有效利用弹药与能源。
粒子炮的缺点是精确度与有效距离会比雷射炮低些,因为毕竟达不到光速。粒子团本身是可以一直增加能量来加速,但速度的增加会在接近光速时递减,丢进去的能量会增加粒子团的质量而不是增加速度,当然这可以增加破坏力,但对精确度的帮助就不大了。故基于经济因素,粒子炮弹道速度大致会限制在光速的95%左右。
其次就是粒子炮的加速器会非常长,比雷射炮的长多了(雷射炮大的部份主要是反射镜的直径)。使用环形的回旋加速器可以缩减体积,但有一个问题,就是在其切线方向会放出致命的辐射,几乎没什么挡的住。有个想法是用组合的方式,以环形轨道在其切线部份拉出线性轨道来发射,但还是要仔细安排让乘员避开辐射区。因此粒子炮的设计与装备会比看书(网军事kanshu。cOm 较麻烦,系统会比雷射复杂,体积会比较大。
以上也就是银英传里的光束炮主要都集中在舰首的原因了,有很多人都质疑这点,但其实那是合理且是必然的(不过我不认为杀人魔王田中是因为知道理由才这样设定的)。能够在远距离击毁敌方大型军舰的粒子炮,其线性加速轨道会长到塞不进炮塔里,其长度甚至可能占舰身长度的90%以上,同时大型雷射炮的震荡管也有一定的长度,反射镜直径也会相当大。
而能装在炮塔里朝四方开火的主要会是中小型雷射炮,因为炮塔的长度限制会大幅减低粒子炮的弹道速度与威力,从而限制其精度。而雷射炮塔的弹道速度不会降低(光),只是出力也不会很大。因此炮塔的功用主要是当作近迫防御武器,用来拦截接近的飞弹与战机这些皮薄的东西。注意这里的“近迫”指的至少也是几千公里以上的距离。
有一点要注意的是,射程从数百公尺到上百公里的步兵用微型光束兵器主要会是以粒子炮为主,反而不会是雷射炮。前面说过雷射的聚焦力跟镜面直径有关,而细细的枪管会限制反射镜直径,反射镜直径太小也会因为镜面散热的问题而有能量投掷限制使威力与射速降低,所以单兵用或是MS的微型光束枪发射的主要会是粒子光束而非雷射。
粒子束的速度与威力跟加速轨长度有关,跟枪管直径没什么关系关系,而枪一般都是长度远大于直径的。小型雷射武器作成战舰的炮塔炮管会较短但是会比较粗,从外表看起来甚至可能只是一个半球形而看不到炮管,要作成单兵用或MS用的武器则会变成粗短的管子,大概就像是短管火箭炮之类的样子。但是粒子炮受限于枪管长度,其射程远比同威力的雷射短。所以即使是使用具有战舰主炮威力的光束来福枪的钢弹也得很靠近目标才发射,战舰的话就是远远的射击了。
基于一个重要的因素,个人认为粒子炮将会是太空战斗中的重要,甚至是主要武器。关键就在于粒子炮乃使用质量弹头而非雷射炮的能源弹头。
一般粒子炮的质量弹头是以撞击的方式来发挥威力,在能源传递数量级上与雷射炮相比不会有非常大的差异。和一般的观念完全不同的是雷射炮与一般粒子炮的打洞方式对于太空战舰上并不一定能造成致命伤害,这跟工业革命以前,战舰火炮没有爆炸弹头的海战非常类似。因为设计结构与工程上的因素,太空军舰将会具有极为强大的防护能力。除非把敌舰打的千疮百孔,否则几发命中弹是很难让其失去战力的。详细的原因会在以后的太空军舰设计篇里提到。
但如果粒子炮发射的是反物质弹头的话那就是完全不同的两回事了。反物质弹头击中目标时,将会与目标的正物质发生歼灭效应放出能量,也就是说会发生爆炸。一毫克的反物质击中目标时,将会与目标表面的一毫克物质发生反应,总共两毫克的质量将全数转为能量。而这个能量则相当于430吨黄色炸药爆炸的威力,直接命中在船壳表面产生的430吨当量等级爆炸足以在瞬间重创乃至于摧毁一艘十万吨级的战舰,即使目标侥幸没有解体也会立刻丧失战力。举个浅显的例子,这相当于860发2000磅炸弹同时在尼米兹级航空母舰甲板上爆炸的威力。此外,反物质对消灭的破坏效果乃是来自于舰体表面的爆炸反应,而非雷射炮与一般粒子炮的穿透打击效应,故属于一种可以扩散破坏面积的攻击方式,因此其破坏力将远大于雷射武器。
以反物质粒子炮而言,做为弹药的反物质可能会以反氢离子或是反氢电浆的方式制造,并以磁场封闭储存之。由于粒子炮可以在开火前任意调整弹药投射量,故可以视目标种类与其距离之不同来选择不同的当量应付。这代表弹药总当量威力是固定的,但单发威力与可供射击次数则可视使用状况任意调整。例如总共携带10公克的反物质则共有430万吨TNT当量的总威力,能够以1毫克/430顿的射击模式发射10000次,或者用0.5毫克/215吨的的较低威力射击模式发射20000次。因此在使用弹性上非常大。
反物质粒子炮的使用有几个问题。其一是弹药的来源。反物质的生产耗能庞大,产量亦将极为稀少。一般的想法是在近太阳轨道配置大量太阳能光电板,用以驱动环绕太阳的环形粒子加速器来大量制造反物质。但即使采用此种最经济的方法来生产,反物质的产量仍将十分有限,价格也会十分昂贵。
第二个问题是反物质需要消耗相当大的能量以磁场封闭或是惯性封法来储存之,同时其运输的管线需要经过仔细的设计,采用集中储存法的话任何储存与输送时的失误都会立即造成致命性的大爆炸而毫无挽救的机会。为了要避免这个问题,应当会采取大规模的细胞室(Cell Room)储存法来微量储存,比如以十万分之一毫克为一个储存单位。这样即使一个细胞室故障让反物质漏出而发生歼灭反应也只有4.3公斤的TNT当量威力,不至于立即摧毁船舰造成无法挽回的损失。特别是在战场的严苛境中更需要此法来保证整个作战系统的安全运作。
但如此一来前述的10克反物质便需要十亿个细胞室来储存,这会让整个储存系统的重量与空间极为庞大,且其连结输送管路会十分复杂,并需要消耗十分庞大的动力。故小型船舰可能没有足够的空间与动力可以容纳大量的反物质储存细胞室,更大的问题是由于系统的复杂会使其造价十分惊人,这就会严重限制它的运用范围。不过只要在设计粒子炮时将反物质弹药的使用纳入考量,则粒子加速轨道将可以共用。也就是说设计来发射反物质粒子炮的炮管可以同时用来发射一般粒子团弹头或反物质团弹头,这可以增加运用弹性。但反物质粒子炮的运用最大的问题应该是成本才是。受限于成本,其数量将会十分稀少。
本文由看书网小说(Kanshu.Com)原创首发,阅读最新章节请搜索“看书网”阅读。